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Genomics Can Influence

 New treatments developed
 Phase I/ll development
e Target patient population




“Biomarkers”

e Surrogate endpoints

— A measurement made on a patient before,
during and after treatment to determine
whether the treatment is working

 Predictive classifier

— A measurement made before treatment to
predict whether a particular treatment is likely
to be beneficial



Surrogate Endpoints

It is extremely difficult to properly validate
a biomarker as a surrogate for clinical
benefit. It requires a series of randomized
trials with both the candidate biomarker
and clinical outcome measured



 Biomarkers can be useful in phase /I
studies and need not be validated as
surrogates for clinical benefit

 Unvalidated surrogates can also be used
for early termination of phase lll trials. The
trial should continue accrual and follow-up
to evaluate true endpoint If treatment
effect on partial surrogate Is sufficient.




Predictive Classifiers

 Most cancer treatments benefit only a minority of
patients to whom they are administered

— Particularly true for molecularly targeted drugs

e Being able to predict which patients are likely to
benefit would
— save patients from unnecessary toxicity

— enhance their chance of receiving a drug that helps
them

— Reduce the size of phase Il clinical trials
— Help control medical costs



Oncology Needs Predictive Markers
not Prognostic Factors

 Many prognostic factor studies use a
convenience sample of patients for whom
tissue Is available. Generally the patients
are too heterogeneous to support
therapeutically relevant conclusions



Pusztal et al.

The Oncologist 8:252-8, 2003

e 939 articles on “prognostic markers” or
“prognostic factors” in breast cancer in past 20

years

« ASCO guidelines only recommend routine

testing for ER,

e “With the exce
receptor expre
amplification, t

PR and HER-2 in breast cancer

potion of ER or progesterone
ssion and HER-2 gene
nere are no clinically useful

molecular predictors of response to any form of
anticancer therapy.”



o Targeted clinical trials can be much more
efficient than untargeted clinical trials, If
we know who to target



n new drug development, the role of a
oredictive classifier is to select a target
population for treatment

— The focus should be on evaluating the new

drug in a population defined by a predictive
classifier, not on “validating” the classifier




Developmental Strategy (I)

Develop a diagnostic classifier that identifies the
patients likely to benefit from the new drug

Develop a reproducible assay for the classifier
Use the diagnostic to restrict eligibility to a
prospectively planned evaluation of the new
drug

Demonstrate that the new drug is effective in the
orospectively defined set of patients determined

oy the diagnostic




Develop Predictor of Response to New Drug

Patient Predicted Responsive

Patient Predicted Non-Responsive

New Drug

PN

Control

Off Study




Evaluating the Efficiency of Strategy (I)

Simon R and Maitnourim A. Evaluating the efficiency of targeted
designs for randomized clinical trials. Clinical Cancer Research
10:6759-63, 2004.

Maitnourim A and Simon R. On the efficiency of targeted clinical
trials. Statistics in Medicine 24:329-339, 2005.

reprints and interactive sample size calculations at
http://linus.nci.nih.gov/brb



Randomized Ratio
(normal approximation)

RandRat - nuntargeted/ r]targeted

2
RandRat =~ o
A0, + (11— 1)o,

0,= rx effect in marker + patients
Op= Ix effect in marker - patients
A=proportion of marker + patients
If 5,=0, RandRat = 1/)A?

If 5,= 6,/2, RandRat = 4/(A+1)?




Randomized Ratio
n /n

untargeted’ ' "targeted
Proportion Marker | No Treatment Benefit | Treatment Benefit for
Positive for Marker Negative Marker Negative
Patients Patients is Half That
for Marker Positive
Patients
0.75 1.78 1.31
0.5 4 1.78

0.25 16 2.56




Screened Ratio

A §,=0 8= 84/2
Marker +
0.75 1.33 0.98
0.5 2 0.89

0.25 4 0.64




Specificity=1 Specificity=0.8 Specificity=0.6
110 e 10 — 1) e
@ e O
- 8¢ * 3] 8-
N ®
g Gt * G E[')ﬁ
= @ )
B % @
o 4 - 4 4-_ '
&
2t 2
oL 0 —_— oLb—
0 02 04 06 08B A 0o 02 04 06 08 A 0 02 04 06 08 A
Froportion R+ Proportion R+ Proportion R+
10 10 10,
Bt B 8t
o
[Ty
N
E G 5] Gt
=]
3
2
"
o

0 0
0 1]

0
o

0.2 04 08B 0B
Proportion R+

1 0.2 04 06 08

Proportion R+

1

Figure 1. Ratio of number randomized for untargeted versus targeted designs.

02 04 06 08

1
Proportion R+

Upper pansl: no freat-

ment effect for B— patients. Lower panel: treatment effect for R— patients half that of B+ patients.

o Sensitivity = 1; & Sensitivity = 0.8; + Sensitivity = 0.6,



Specificity=1 5 Specificity=0.8 . Specificity=0.6

E

LB

58]

Ratio screened

-

ob— . ob— .. o
0 02 04 06 D8 1 0 02 04 06 08 1 0 02 04 06 08 1

Propartion R+ Proportion R+ Proportion R+
5 5 5
4 4 4
=
[id
@
o2 2 2
"
v
1 1f
.'". '.I
0 02 04 06 0B 1 0 02 04 06 08 1 1] 0.5 1

Propaoriion R+ Proportion R+ Proportion R+

Figure 2. Ratio of number randomized for untargeted design to number screened for targeted design,
Upper pansl: no treatment effect for B— patients. Lower panel: weatment effect for BE— patients half
that of R+ patients. o Sensitivity = 1; # Sensitivity = 0.8; + Sensitivity = (L6,



* For Trastuzumab, even a relatively poor
assay enabled conduct of a targeted
phase Il trial which was crucial for
establishing effectiveness

* Recent results with Trastuzumab in early
stage breast cancer show dramatic
benefits for patients selected to express
Her-2




Comparison of Targeted to Untargeted Design

Simon R, Development and Validation of Biomarker Classifiers for Treatment Selection, JSPI

Treatment Hazard Number of Events for | Number of Events for Traditional
Ratio for Marker Targeted Design Design
Positive Patients

Percent of Patients Marker
Positive

20% 33% 50%

0.5 74 2040 720 316




Interactive Software for Evaluating
a Targeted Design

e http://linus.nci.nih.gov/brb/
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Developmental Strategy (ll)

Develop Predictor of
Response to New RX

Predicted Predicted Non-
Responsive responsive to New Rx
To New Rx

Control
New RX Control




Developmental Strategy (I1)

e Do not use the diagnostic to restrict eligibility,
but to structure a prospective analysis plan.

 Compare the new drug to the control overall for
all patients ignoring the classifier.
— If pyvera< 0.04 claim effectiveness for the eligible
population as a whole
« Otherwise perform a single subset analysis
evaluating the new drug in the classifier +
patients

— If pgpeets 0.01 claim effectiveness for the classifier +
patients.



 The purpose of the RCT is to evaluate
treatment T vs C overall and for the pre-
defined subset; not to re-evaluate the
components of the classifier, or to modify
or refine the classifier



Sample Size Planning for Design |l

1. Size for standard power (e.g. 0.9) for
detecting usual treatment effect d at
significance level 0.04 OR

2. Size for standard power (e.g. 0.9) for
detecting treatment effect in subset of
size d /proportion positive OR

3. Size as in (1) but extend accrual of
classifier positive patients to number In
(2) If overall test is non-significant



Developmental Strategy (l1b)

« Do not use the diagnostic to restrict eligibility,
but to structure a prospective analysis plan.

 Compare the new drug to the control for
classifier positive patients
— If p,>0.05 make no claim of effectiveness

— If p,< 0.05 claim effectiveness for the classifier
positive patients and

e Continue accrual of classifier negative patients and
eventually test treatment effect at 0.05 level



Sample size Planning for Ilb

e Accrue classifier + and - patients in a manner
that enriches for classifier + patients until there
are sufficient classifier + patients for standard

power at significance level 0.05 for detecting

arge treatment effect D

 |f treatment is found effective in classifier +
patients, continue accrual of - patients for
standard power at significance level 0.05 for
detecting usual size treatment effect d
representing minimal useful clinical utility




The Roadmap

1. Develop a completely specified genomic
classifier of the patients likely to benefit from a
new drug

2. Establish reproducibility of measurement of the
classifier

3. Use the completely specified classifier to
design and analyze a new clinical trial to
evaluate effectiveness of the new treatment
with a pre-defined analysis plan.



Guiding Principle

 The data used to develop the classifier
must be distinct from the data used to test
hypotheses about treatment effect In
subsets determined by the classifier

— Developmental studies are exploratory

— Studies on which treatment effectiveness
claims are to be based should be definitive
studies that test a treatment hypothesis in a

patient population completely pre-specified by
the classifier




Development of Genomic
Classifiers

e Single gene or protein based on
knowledge of therapeutic target

e Single gene or protein culled from set of
candidate genes identified based on
iImperfect knowledge of therapeutic target

 Empirically determined based on
correlating gene expression to patient
outcome after treatment



Development of Genomic
Classifiers

* During phase Il development or

 After failed phase Il trial using archived
specimens.

« Adaptively during early portion of phase Il
trial.



Development of Empirical Gene
Expression Based Classifier

e 20-30 phase Il responders are needed to
compare to non-responders in order to
develop signature for predicting response

— Dobbin KK, Simon RM. Sample size planning
for developing classifiers using high
dimensional DNA microarray data,
Biostatistics (In Press); available at
http://linus.nci.nih.gov



Development of Empirical Gene
Expression Based Classifier

e A signature of response to the new drug
may not represent a signature of
preferential benefit from a regimen

containing the new drug versus a control
regimen



Adaptive Signature Design
An adaptive design for generating and
prospectively testing a gene expression
signature for sensitive patients

Boris Freidlin and Richard Simon
Clinical Cancer Research 11:7872-8, 2005



Adaptive Signature Design
End of Trial Analysis

« Compare E to C for all patients at
significance level 0.04

— If overall H, Is rejected, then claim
effectiveness of E for eligible patients

— Otherwise



e Otherwise:

— Using only the first half of patients accrued during the
trial, develop a binary classifier that predicts the
subset of patients most likely to benefit from the new
treatment E compared to control C

* Genes selected based on interaction between expression
level and treatment effect (E vs C)

« Weighted voting classifier used

— Compare E to C for patients accrued in second stage
who are predicted responsive to E based on classifier
* Perform test at significance level 0.01

* If H, Is rejected, claim effectiveness of E for subset defined
by classifier



Treatment effect restricted to subset.
10% of patients sensitive, 10 sensitivity genes, 10,000 genes, 400

patients.
Test Power
Overall .05 level test 46.7
Overall .04 level test 43.1
Sensitive subset .01 level test 42.2
(performed only when overall .04 level test is negative)
Overall adaptive signature design 85.3




Overall treatment effect, no subset effect.
10,000 genes, 400 patients.

Test Power
Overall .05 level test 74.2
Overall .04 level test 70.9
Sensitive subset .01 level test 1.0
Overall adaptive signature design 70.9




Myths about the Development of
Predictive Classifiers using Gene
Expression Profiles



Myth

* Microarray studies are exploratory with no
hypotheses or objectives



Good Microarray Studies Have
Clear Objectives

e Class Comparison

— Find genes whose expression differs among predetermined
classes, e.g. tissue or experimental condition

 Class Prediction

— Prediction of predetermined class (e.g. treatment outcome)
using information from gene expression profile

e Class Discovery

— Discover clusters of specimens having similar expression
profiles

— Discover clusters of genes having similar expression profiles



Myth

e Cluster analysis is a useful for analysis of
most microarray studies



Class Comparison and Class
Prediction

* Not clustering problems
e Supervised methods should be used



Myth

 Development of good predictive classifiers
IS not possible with >1000 genes and <100

casSes

* Predictive models should be reproducible
on independent data



Much of the conventional wisdom of statistical analysis is
focused on inference, not on prediction

Demonstrating statistical significance of prognostic
factors is not the same as demonstrating predictive
accuracy

Predictive models should predict accurately for
Independent data; the model itself need not be
reproducibly derivable on independent data

Most statistical methods were not developed for
prediction problems and particularly not for prediction
problems with >10,000 variables and <100 cases

Accurate prediction is possible for p>>n problems if there
are sufficient informative genes and new approaches to
model development are used
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Concordance among Gene-Expression—
Based Predictors for Breast Cancer
Cheng Fan, M.S,, Danlel 5. Oh, Ph.D,, Lodewyk Wessels, Ph.D

Britta Weigelt, Ph.D.. Dimitry 5.4 Nuyten, M.D. Andrew B, Nabel, Ph.D.,
Lawra | wam't Weer, Ph.0,, and Charles M. Perou, Ph.D,

ABSTRACT

BACKSROUND
Gene-expression-profiling studies of primary breast tumors performed by differ-
ent libortories have resulted o the identification of a number of distinct prognos-
tic profiles, or gene sets, with little overlap in terms of gene identity,

METHODE
To compare the predictions derived from these gene sets for individual samples, we
obrained a single dara set of 295 samples and applied five gene-expression—bazed
models: intrinsic subtypes, Ti-gene profile, wound response, recurrence seore, and
the two-gene ratio (for patients who hid been treated with tamosifen),

RESULTS
We found thit most models had high mtes of concordance in their outcome predic-
tions for the individual samples. In particular, almost all tumers identified as hav-
ing an intrinsic subtype of basal-like, HERZ-positive ind estrogen-receptor-nega-
tives, or luminal B (associaved with a poor prognosis) were also classified as having
i poor Tkgene profile, activated wound response, dod high recurrence score. The
F0-perie and recurrence-score models, which are beginniog to be used in the dini-
cal setting, showed 77 to B1 percent agreement in outcome classificadion.

COMCLUSIONS
Even though different gene sets were used for prognostication in patients with
breast cancer, foar of the five tested showed significant agreement in the outcome
predictions for individual patients and are probably rracking a common sét of bio-
logic phenotypes.
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Myth

 Complex classification algorithms such as
neural networks perform better than
simpler methods for class prediction.



o Artificial intelligence sells to journal
reviewers and peers who cannot
distinguish hype from substance when it
comes to microarray data analysis.

 Comparative studies generally indicate
that simpler methods work as well or
better for microarray problems because
they avoid overfitting the data.



A set of genes Is not a classifier

e Gene selection

« Mathematical function for mapping from
multivariate gene expression domain to
prognostic or diagnostic classes

* Weights and other parameters including
cut-off thresholds for risk scores



Simple and Effective Classifiers

e Select genes that are individually
correlated with outcome

e | Inear classifiers

— Diagonal LDA, Compound covariate predictor,
Weighted voting classifier, Linear Support
vector machines

 Nearest neighbor and shrunken centroid
classifiers



Feature Selection

e Genes that are univariately differentially
expressed among the classes at a significance
level a (e.g. 0.01)

— The o level is selected to control the number of genes

In the model, not to control the false discovery rate
« Methods for class prediction are different than those for class
comparison

— The accuracy of the significance test used for feature
selection is not of major importance as identifying
differentially expressed genes is not the ultimate
objective



Feature Selection

 Small subset of genes which together give
most accurate predictions

— Combinatorial optimization algorithms
e Genetic algorithms
o Little evidence that complex feature
selection is useful in microarray problems
— Failure to compare to simpler methods

— Some published complex methods for
selecting combinations of features do not
appear to have been properly evaluated



Evaluating a Classifier

* Fit of a model to the same data used to
develop it Is no evidence of prediction
accuracy for independent data

— Goodness of fit Is not prediction accuracy
 Demonstrating statistical significance of

prognostic factors is not the same as
demonstrating predictive accuracy



Split-Sample Evaluation

e Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds
e Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors is counted

— ldeally test set data is from different centers than the
training data and assayed at a different time



Non-Cross-Validated Prediction

log-expression ratios

1. Prediction rule is built using full data set.

2. Rule is applied to each specimen for class
prediction.

full data set

specimens

Cross-Validated Prediction (Leave-One-Out Method)

1. Full data set is divided into training and
test sets (test set contains 1 specimen).
2. Prediction rule is built from scratch
using the training set.
3. Rule is applied to the specimen in the
test set for class prediction.
4. Process Is repeated until each specimen
has appeared once in the test set.

log-expression ratios

training set

specimens




e Cross validation is only valid if the test set is not used In
any way in the development of the model. Using the
complete set of samples to select genes violates this
assumption and invalidates cross-validation.

e With proper cross-validation, the model must be
developed from scratch for each leave-one-out training
set. This means that feature selection must be repeated
for each leave-one-out training set.

— Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the analysis of DNA microarray data. Journal
of the National Cancer Institute 95:14-18, 2003.

 The cross-validated estimate of misclassification error is
an estimate of the prediction error for model fit using
specified algorithm to full dataset



Myth

o Split sample validation is superior to
LOOCYV or 10-fold CV for estimating
prediction error
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Prediction Error Estimation: A Comparison of
Resampling Methods

Annette M. Molinaro ™! Richard Simon©, Ruth M. Pfeiffer®
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ABSTRACT

Mativation: I genomic studies, (housands of lealures ara
collected on relatively few samples. One of the goals of
these studies 15 to build classfiers to pradict the outcome of
fulure obeervations. There are thres inherant steps to his
process: feslure selection, modal selection, and prediction
assessmant. With & focus on prediction assessment, we com-
pare severel methods for estimating the “rue’ prediction error
of a pradiction modsal in the presance of feature selaction,
Resulis: For small studies where features are selected from
thousands of candidates, the resubstitution and simple spii-
sample estimates are seriously biased. In these small samp-
las, laave-ona-cut (LOOCY), 10-fold cross-validaton [CW),
and the G832+ boolstrap havae the smallest bias for diago-
nal discriminanl analysis, nearest naighbor, and dassification
traas, LOQCV and 10-fald GV have tha smallast bias for linaar
discriminant analysis. Additicnally, LOOCY, 5- and 10-fald CV,
and tha 632+ boalstrap have the lowest maan square arror,
Tha 632+ booistrap is quile biased in small sampla sizes
with strang signal o noise ralios, Diferences in performance
among resampling melhods are reduced as the number of
specimans available increase.

Avnilability: A complale compilation of resulls in tables and
figures |s available in Molinaro o of (2005). R code for
simulalions and analyses is available from the authors,
Cantact: Bnnstte molinarogiyels edu

1 INTRODUCTION

In genomic experiments ene frequantly escounters high
dimensional data and small sample sizes, Microarrays simul-
tanecusly monitor expression levels for several thousands
of genes. Proteomic profiling studies using SELDMSTOF
(surface-entanced laser desorplion and jonizaton wmesof-
flight | measure siee and charge of prodeins and protein frag-
ments by mass speciroscopy, and resuli inoup o 15,000
imtensity levels at prespecified mass values for each spectrum.
Sample sizes i such experiments are oypically less than 1,

e WALHE eorvesprnicios shoulid be mideasad

Iin maany studies ohservations are known o balong e pre-
determined classes and the sk is to build predictors of
classifiers for new observations whiose cliss is unknown
Deciding which genes or proteamic measuremends 1o include
in the prediction is called foeire sefeciion and i 8 cnu-
cial step in developing a class predicior, Including ton many
noisy varables reduces accuracy of the prediction and may
lead to owver-fiting of data, resuliing in promising bt oflen
non-reproducible resulis {Ransoholl, 2004).

Amncdher difficuliy is model selection with numerous clas-
sitication models availahle. An imporant step in reporing
resulis is assessing the chosen model’s error mie, or pene-
ralizahility. In the absence of independent validation datw, a
common approach to esimating predictive accuracy 15 hased
o somme form of resampling the orginal dota, e.p., eross-
validation, These wchmques divade the data imo o Jearning
seb amd ntest set and range i complexity from the popular
lenrming-test split to e-fold cross-valsdation, Mome-Carle -
fold cross-valedation, and boeotstrap resampling, Few compa-
rigons of standard resampling methods have been performed
b dite, and all of them exhabt himitations that make their
conclusions inapplicable o most genomic settings, Barly
comparizons of resamphing techniques in the lerature are
focussed on model selection as opposed w prediction arvor
estumation (Breiman and Spector, 1962, Burman, 1989, In
two recenl assessments of resampling echnigues for errer
estimation (Braga-Mew and Dougheny, 2004; Efron, 2004),
feature selection wis o included as pan of the resampling
procedures, causing the conclusions 1o be inapproprizie for
the high-dimensional setting.

We have performed an extensive comparnson of resamp-
ling methods o estimaie prediction error using simadated
{large signal o nodse o), microamay {mtermediate signal
to moise riio) and proteomic data (low sagnal io novse o],
encompassing increasing sample sizes with large numbers
of fieatures. The mmpact of feature selection an the perfor-
mance of varous cross validation methods s pehhghted
The results elucidate the “hest” sesampling techmgues for

(2 Ciford Universiy Fress 2006



Limitations to Internal VValidation

 Sample handling and assay conduct are
performed under controlled conditions that
do not incorporate real world sources of
variability

* Developmental studies are generally small

e Predictive accuracy Is often not clinical
utility



External Validation

From different clinical centers

Specimens assayed at different time from
training data

Samples handled and assayed blinded from
clinical outcome

Study sufficiently large to give precise estimates
of sensitivity and specificity of the classifier

Study addresses clinical utility of using the
genomic classifier compared to using standard
practice guidelines



Myth

 Huge sample sizes are needed to develop
effective predictive classifiers



Sample Size Planning
References

K Dobbin, R Simon. Sample size
determination in microarray experiments
for class comparison and prognostic
classification. Biostatistics 6:27-38, 2005
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Sample Size Planning for Classifier
Development

 The expected value (over training sets) of
the probability of correct classification
PCC(n) should be within y of the maximum
achievable PCC(®)



Probability Model

Two classes

Log expression or log ratio MVN in each class with
common covariance matrix

m differentially expressed genes
P-M noise genes

Expression of differentially expressed genes are
Independent of expression for noise genes

All differentially expressed genes have same inter-class
mean difference 20

Common variance for differentially expressed genes and
for noise genes



Classifier

e Feature selection based on univariate t-
tests for differential expression at
significance level o

o Simple linear classifier with equal weights
(except for sign) for all selected genes.
Power for selecting each of the informative
genes that are differentially expressed by
mean difference 26 Is 1-B(n)
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Optimal significance level cutoffs for gene selection. 50 differentially expressed genes

out of 22,000 genes on the microarrays

20/0 n=10 n=30 n=50
1 0.167 0.003 0.00068
1.25 0.085 0.0011 0.00035
1.5 0.045 0.00063 0.00016
1.75 0.026 0.00036 0.00006
2 0.015 0.0002 0.00002
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Sample size as a function of effect size (log-base 2 fold-change between classes divided by standard

deviation). Two different tolerances shown, . Each class is equally represented in the population.
22000 genes on an array.
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Class Comparison
2 equal size classes

N = 46%(z,, + zp)*/5°

where 6 = mean log-ratio difference between

classes
o = within class standard deviation of biological
replicates

Z,12, Zg = Standard normal percentiles
e Choose asmall, e.g. a =.001
« Use percentiles of t distribution for improved accuracy



m = proportion of genes on array that are
differentially expressed between classes

N = number of genes on the array

FD = expected number of false discoveries
TD = expected number of true discoveries
FDR = FD/(FD+TD)



e FD = a(1-n)N

e TD = (1-B) =N

e FDR = a(1-7m)NAa(1-t)N + (1-B) N}
=141 + (1-B)=/o(1-1)}



Controlling Expected False
Discovery Rate

T o B FDR
0.01 0.001 0.10 9.9%
0.005 35.5%

0.05 0.001 2.1%
0.005 9.5%




Total Number of Samples for
Two Class Comparison

o B o c Samples
Per Class
0.001 0.05 1 0.5 13
(2-fold) human tissue
0.25 6
transgenic (t approximation)

mice




Number of Events Needed to Detect
Gene Specific Effects on Survival

e o = standard deviation in log2 ratios for each
gene

o & = hazard ratio (>1) corresponding to 2-fold
change Iin gene expression

Ly g2 T 4p

. olog,0 |




Number of Events Required to Detect
Gene Specific Effects on Survival

$5=0.001,8)=0.05

Hazard Ratio £

Events
Required

0.5

26

1.5

0.5

/6




Selected Features of BRB-ArrayTools
linus.nci.nih.gov/brb

Gene finding

— Multivariate permutation tests

— Fast SAM

— t/F tests with hierarchical variance model

— Class comparison, survival comparison, quantitative trait
correlation

Extensive gene annotation

Gene set comparison analysis
— GO, pathways, signatures, TF targets, protein domains

Analysis of variance
— Fixed, mixed, time-course, complex 2-color designs



Selected Features of BRB-ArrayTools

e Class prediction

— DLDA, CCP, Nearest Neighbor, Nearest Centroid,
Shrunken Centroids, SVM, Random Forests,Top
scoring pairs, naive Bayesian classification

— Complete LOOCV, k-fold CV, repeated k-fold,
.632+ bootstrap

— permutation significance of cross-validated error
rate

e Survival risk group prediction
* R plug-ins



Conclusions

 New technology and biological knowledge make
it iIncreasingly feasible to identify which patients
are most likely to benefit from a specified
treatment

 “Predictive medicine” is feasible but does not
mean “personalized treatment”

e Targeting treatment can greatly improve the
therapeutic ratio of benefit to adverse effects
— Smaller clinical trials needed
— Treated patients benefit
— Economic benefit for society



Conclusions

* Achieving the potential of new technology
requires paradigm changes in focus and
methods of “correlative science.”

« Achieving the potential of new technology
requires paradigm changes in partnerships
among industry, academia, NIH and FDA.

o Effective interdisciplinary research requires
Increased emphasis on cross education of
laboratory, clinical and statistical scientists



Conclusions

* Prospectively specified analysis plans for
phase lll data are essential to achieve
reliable results

— Biomarker analysis does not mean
exploratory analysis except in developmental
studies

— Biomarker classifiers used in phase Il
evaluations should be completely specified
based on previous developmental studies
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